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Abstract: Masses associated with the topography, bathymetry, and its isostatic
compensation are a dominant source of gravity field variations, especially at
shorter wavelengths. On global scales the topographic/isostatic effects are also
significant,except for the lowest harmonics. In practice, though, global effects
need not be taken into account as such effects are included in the coefficients

of the geopotential reference fields. On local scales, the short-wavelength gravi-

ty variations due to the topography may, in rugged terrain, be an order of mag-
nitude larger than other effects. In such cases, explicit or implicit terrain reduc-
tion procedures are mandatory in order to obtain good prediction results. Such
effects may be computed by space-domain integration or by FFT methods.
Numerical examples are given in the paper for areas of the Canadian Rockies.

ln principle, good knowledge of the topographic densities is required to pro-
duce the smoothest residual field. Densities may be determined from sample mea-
surements or by gravimetric means, but both are somewhat troublesome methods
in practice. The use of a standard density, e.g., 2.67 g/cm', may often yield
satisfactory results and may be put within a consistent theoretical framework.

The independence of density assumptions is the key point of the classical
Molodensky approach to the geodetic boundary value problem. The Molodensky
solutions take irito account that land gravity field observations are done on a
non-level surface. Molodensky's problem may be solved by integral expansions or
more effective FFT methods, but the solution should not be intermixed with the
use of terrain reductions. The methods are actually complimentary and may both

be required in order to obtain the smoothest possible signal, least prone to alias-
ing and other effects coming from sparse data coverage, typical of rugged topo-

g raphy.

Introduction

The two aspects of the role of the topography, namely the direct attraction
of masses of the terrain and the uneven surface on which terrestrial measure-

ments are made, are from a theoretical point of view completely different

problems. The first assumes a density model, while the second - the Molodensky
theory - in principle is free of any density assumptions. Using terrain reductions
a computational smoothing of the gravity field is attempted, making interpolation
and prediction from scattered data points more precise. Molodensky's theory
makes the classical geodetic boundary value problem solutions "correct" on the
uneven topographic surface; applying the Molodensky correction terms to gravity
implies no smoothing at al.. The methods are therefore complimentary and should
be used together whenever feasible.

Terrain reductions

The terrain reductions may be classified under global or local models. On

global scales, topographic-isostatic reductions must be used according to some
idealized isostatic models. The simple model coming closest to geophysical rea-

lity is the Vening Meinesz model, which is a modified Airy model taking into ac-
count the elasticity of the crust, permitting short-wavelength loads to remain un-
compensated. Some areas of the earth are, however, notably deviating from the
simple models, as for example trench areas and midoceanic ridges. For a review
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of computation of global topographic-isostatic effects, which may be done effici-
ently by fast spherical harmonic expansions,see Rummel et al. (1988).

The global topographie-isostatic reductionshave only limited use in geodetic
gravity field modelling, but are very useful for identifying anomalouslycompensa-
ted areas. The real impact of terrain reductions come on the local scale, where
they strongly diminish aliasing from undersampling of the rapidly varying, height-
correlated gravity anomalies in rugged topography.

On a local scale, isostatic effects need not be considered. Instead, a residual
terrain model reduction (RTM), where only the topographic deviations from a smooth
mean topography are considered, may be used with advantage. The smooth mean

height surface h r may be obtained from the topographic heights h by a moving
average filter over suitable caps, say 1 ° in size. In this case, RTM-reduced gra-
vity anomalies will resemble isostatic anomalies (Forsberg, 1984). Removing the

complete effect of topography relative to a constant mean elevation level for a
given area, as often done in practice, may be considered a special case of the
RTM reduction. The total computational removal of all topography down to the
geoid, i.e. the complete Bouguer reduction, is not useful in geodetic gravity field
modelling because of very large indirect effects on the geoid.

The general form of a terrain effect on any gravimetric quantity expressable
as a linear functional L(T) of the anomalous potential T is of the general form

h

Lp(T m) = GfffLp({)dxdydz, £= ,/(X-Xp)2+(y-yp)a+(z-hp) 2 (1)

E h r

where E is the infinite x-y plane (planar approximation). Integrals like (1) may
in practice be evaluated by prism integration or by expansions in convolutions,

• permitting use of FFT techniques. For details see Forsberg (1984, 1985) or Side-

ris (1985). Formally T m is the potential generated by the selected terrain mass
model. When computations are done consistently in a remove-restore technique,
i.e. modelling the reduced potential

T c = T - T (2)
m

by subtracting terrain effects from input data, and restoring terrain effects in
predictions, then in principle density p need not be known. However, meaningful
results are only obtained when p is close to the real word values.

The question of density

Estimation of good insitu densities is often quite difficult. Only the surface
of topography is available for sampling, and measurements of bulk densities on
rock samples tend to show high variability even within the same geological for-
mation. For sedimentary rocks, questions of porosity, water saturation, and com-
paction present special problems. Typical density values encountered mpractice
range from below 2.0g/cm' in moraine hills up to 3.3 g/cm _ in(rare) gabbroic
intrusive areas. However, the standard density 2.67 g/cm 3 represents a surprising
good value in many cases (granities, gneisses, old sediments), and its use have
been justified by many empirical investigations (Dobrin, 1976). Where significant-
ly lower density values need to be used (e.g., young sediments), topographic re-
lief is usually also lower and good density values are therefore less critical.

For local applications a good alternative to density measurements is the estima-
tion of 0 through studies of correlation of gravity with topographic heights ("the
Nettleton method"). This me.thod may be put within a consistent framework in
least-squares collocation, estimating one or more density parameters alongside the
gravity field modelling itself. V.For details, see Sfinkel (1981).
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Molodensky's problem

The first order Molodensky solution to tile geodetic boundary value problem
consists of a series expansion of the form

_;(P) _ 1 If gn(Q)= _ d XQd yq
n=0 2_, [ _yp)2 ]½E (XQ-xp)i+(YQ

(3)

with

go (Q) =_g(Q) (4)

l ff Ag (x,y) - Ag!xQ,yQ)
gl(Q) = -(hq-hp) _ E [(XQ-X)2+(yq -y)2]'/2 dxdy

(5)

For a review, see Moritz (1980) or Sideris (1987). Depending on the terrain roughness,
higher-order terms may be quite significant. Their computation requires repeated
applications of the harmonic continuation integral (5), which may be formulated
as a sequence of convolutions and evaluated efficiently by FFT methods. For
examples see Sideris (1987).

When used on free-air anomalies, formula (5) is known to be closely related
to the classical terrain correction c (Moritz, 1980). The relationship comes from
noting that in rugged topography free-air anomalies show a correlation with
terrain height of the form Ag = Agn+2_Caoh where Ag n is the simple Bouguer
anomaly. Unfortunately the use of c ('-'requiring density _'nformation) rather than

.gl (independent of la)have been the source of much confusion, and the practice
is not recommended. It is thus preferable to evaluate (5) with terrain-reduced
gravity data Agc. The corresponding "reduced" Molodensky terms gC will be
smaller, and the convergence of (3) improved. If terrain reductionsnare not used
then, on the one hand, gravity data must be given densely enough to sufficiently
sample even the shortest topographic-induced wavelengths, and, on the other
hand, higher-order Molodensky series terms should be considered. Dense gravity data
are hardly ever available in practice.

An example: Kananaskis area, Canadian Rocky Mountains

The Kananaskis area west of Calgary is a mountainous area with topography
ranging from 1400 m to 3400 m. A number of astronomic deflections of the verti-
cal and GPS-derived geoid undulations are available along the main valley area,
in addition to gravity data space every 5 to 10 km in the surrounding region,
and a dense digital terrain model. Results for a FFT gravity field modelling
example are given below; for more results on terrain corrections for gravity and
_:radiometrv in the same area, see Tziavos et al. (1988).

For the terrain reduction of the available data, a 100 m x 100 m and 1 km
x 1 km DTM was used. A smooth height surface with resolution of 70 km was
generated by averaging. The statistics of the data, removing topographic effects
relative to the mean height surface, is shown below. Predictions were not at-
tempted without terrain reductions, as individual gravity anomaly values could chan-
ge up to 100mgal close to the prediction points, depending on whether the obser-
vation happened to be made on top of a mountain or at the bottom of a valley. In
other words, the observed Ag-field is seriously undersampled without some kind
of terrain reduction.

87



Kananaskis: Effect of the topoKraphy on observed gravity field data

Data type

No. o[
)oints

Statistics

Observed values

Terrain effects

Reduced data

z_

(regal)

473

mean std.dev.

20.5 57.2

-14.9 47.2

35.4 29.8

(arcsec)

q

(arcsec)

15

mean std.dev, mean std.dev.

1.37 3.37 .95 6.28

.86 2.97 -.22 5.74

.51 1.60 1.16 2.15

C(m, relative to
nor thernmost

GPS-point)

10

mean std.dev,

1.15 .46

.27 .21

.88 .25

For the FFT prediction, gravity anomalies were gridded on a 1.5'x2.5' grid
in a 2.5Qx3 ° region. A similar 1.5'x2.5' height grid was obtained by gridding

gravity station heights for representing the uneven surface to which observations
refer, in order to be able to use FFT techniques for computing the first-order

• C
Molodensky corrections gl" The procedure of gridding station heights rather than
averaging the detailed DTM is preferable, because the height distribution of gra-
vity stations does not necessarily follow the averaged topography; gravity stations

tend to be located in valleys rather than mountaintops.
The results of predictions with and Without a spherical harmonic reference

field (OSU86F to degree 180), and with and without the Molodensky terms,

are shown below. Considering the rough topography, results are very satisfactory.
The influence of the Molodensky term seems to be completely masked by Other
error sources, illustrating the high degree of smoothness locally provided by the
terrain reductions.

Kananaskis: Prediction results (observed minus predicted) for various solution types

Solution with

180x 180 Molodensky g I
reference field terms

No No

No Yes

Yes No

(arcsec)
mean std.dev.

.92 .65

.91 .69

1.92 .66

q

(arcsec)

mean std.dev.

.31 .57

.33 .60

-1.57 .48

relative

(m)
mean I_Mb

.09 .24

.09 .25

.09 .17
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